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Axisymmetric rotating flow past a circular disk 
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The steady, inviscid, axisymmetric, rotating flow past a circular disk in an 
unbounded liquid is determined on the hypothesis that all streamlines originate 
in a uniform flow far upstream of the body. The characteristic parameter for the 
flow is k = SQalU, where s1 and U are the angular and axial velocities of the 
basic flow and a is the radius of the disk. Forward separation is found to occur 
for k > k, = 1.9, in agreement with observation (Orloff & Bossel 1971). The 
length of the upstream separation bubble is determined on the hypothesis that 
the previous solution remains valid for k > k, despite the existence of closed 
streamlines within the upstream separation bubble (which may, but do not 
necessarily, inva,lidate the solution). This length increases rapidly for k > 3, in 
qualitative agreement with observation. The hypothesis of unseparated flow 
implies a singularity at  the rim of the disk, just as in potential flow. The strength 
of this singularity departs only slightly from its potential-flow value for 
0 < k < 2, but increases rapidly with k for k > 3, which suggests that (quite 
apart from the difficulties implied by the existence of closed streamlines) the 
solution cannot remain valid for sufficiently large k. 

1. Introduction 
This paper aims at  a theoretical prediction, on the basis of an inviscid model, 

of the conditions for the formation and growth of a separation bubble upstream 
of an obstacle in a steady, axisymmetric, rotating flow. The characteristic 
parameter is the inverse Rossby number 

k = 2Qa/U, (1.1) 

where Q and U are the rotational and translational velocities of the basic flow 
and a is the maximum transverse radius of the obstacle. Theoretical considera- 
tions suggest that rotation decreases the stagnation-point acceleration by an 
amount that increases with k, such that forward separation occurs for k > k, and 
leads to the formation of an upstream separation bubble of lengbh s (k) .  They 
also suggest that k, = k,(T) and s = s(k,  T )  in a real fluid of viscosity v, where 

T = Sla2/v = 4kRe = l/E (1.2) 

is the Taylor number, Re is the Reynolds number, and E is the Ekman number. 
The double limit k+m,  T f m ,  corresponding to slow inviscid motion, yields 
a Taylor column, s f 00, inside which the axial velocity vanishes. The double 
limit k J. 0, Re f 00 yields potential flow, for which k, = 8 = 0. 
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The only quantitative observations of upstream separation bubbles appear to 
be those of Maxworthy (1970) for a sphere and those of Orloff & Bossel (1971) both 
for a sphere and for a disk with a conical afterbody. Their experiments differed 
in a t  least three significant respects: (i) Maxworthy did not (during the observa- 
tions cited herein) impose any constraints against, whereas Orloff & Bossel 
prevented, axial rotation of the obstacle; (ii) Maxworthy’s spheres were signifi- 
cantly smaller, with a/R = 0.04 versus 0.24 for Orloff & Bossel (where R is the 
radius of the tube that confined the rotating flow); (iii) Maxworthy varied k 
and T independently, whereas Orloff & Bossel did not. 

Maxworthy reports forward separation for all k 2 1, and possibly for k as 
small as 0-5, that 5(k,T) is a non-decreasing function of k that tends asymp- 
totically to a finite limit, say Z(T), and that S(T) increases linearly with T for 
T > 200. His limiting results imply that s increases exponentially with k for 
sufficiently large T and suggest that it may be independent of T for sufficiently 
small k. His data are inadequate for the determination of k,, but they do imply 
k, 5 1 and suggest the possibility that forward separation could occur for any 
positive value of k. Maxworthy describes the separation bubble or “slug” as 
“a sharply defined region of almost stagnant fluid [in the sense that] the axial 
velocitiy is very low, although the relative swirl velocity can be quite large”; 
he does not report any recirculating flow within the bubble. He also reports that 
the sphere did not rotate for k 5 1, rotated at an increasing rate for 1 5 k 5 5 
and rotated with the basic flow for k 2 5. 

Orloff & Bossel report that forward separation from a sphere does not occur 
for k 5 2.6, that s increases linearly with k for 4-6 5 k 5 8.4 and that a Taylor 
column (5 = m) forms for k 2 9; however, they did not actually measure k, for 
the sphere (the value k, = 2.6 was inferred from a rather good, straight-line 
fit to thirteen points for s/a us. k in 4.6 < k < 8.4), and the significance of their 
description “Taylor column” is limited by the finite length of their apparatus 
(with s N- 3061 as the maximum observable value or bubble length). For a disk 
of radius a with a conical afterbody of length a, they report k, ;; 1.9 (directly 
measured) and Taylor-column formation for k 2 10. They report recirculating 
flow within the separation bubble and a definite stagnation point at its upstream 
apex. 

A theoretical calculation for a sphere in an unbounded inviscid flow (a/R 4 0, 
T t 00) yields k, = 2.2 on Long’s hypothesis of uniform upstream flow (Miles 
1971). This is close to the value (k, N 2.6) reported by Orloff & Bossel but far 
from that (k, 5 1) implied by Maxworthy’s observations. It therefore appears 
to be significant that the theoretical model implies a non-rotating disk, which 
corresponds more closely to the former observations. This same theoretical 
calculation also yields a, downstream shift of the aft separation ring with in- 
creasing k; in this instance, however, the maximum calculated shift of 24’ is 
in qualitative agreement with Maxworthy’s observations, whereas Orloff & 
Bossel report that the flow is unseparated (corresponding to a rotation-induced 
shift of roughly 90” for the aft separation ring) for sufficiently large k. 

The theoretical question as to whether there exists a critical value of k for 
the formation of a true Taylor column in an inviscid flow remains controversial. 
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It does appear, however, that there exists a representative value of k, say k,, 
at which the length of the upstream separation bubble begins to increase rapidly 
with k if the Taylor number is sufficiently large. A calculation of the asymptotic 
(as t -+ co) speed at which the stagnation point moves forward from an impulsively 
started disk in the slow-motion approximation, U = 0.675Qa (Greenspan 1968, 
§4.3), yields k, = 3-0. This calculation is significant in showing that a forward 
stagnation point can move upstream, but the finite value of k, is inconsistent 
with the slow-motion approximation (which is strictly valid only for k t 00) on 
which it is based; moreover, the model does not permit the stagnation point to 
remain a t  equilibrium in a steady flow. 

Against this background, we consider steady, laminar, inviscid, axisymmetric, 
rotating flow past a circular disk in an unbounded liquid on the basis of Long’s 
hypothesis. [The calculation of s(k) for a sphere would be more difficult than for 
the disk; moreover, the known results for the disk in the limit Ic f 00 (Greenspan 
1968) provide it valuable basis of comparison.] This is, to be sure, a highly 
idealized model and is open to the following objections: (i) Long’s hypothesis 
may fail in consequence of any or all of transient, viscous and boundary effects 
(the limits t f- co, I/ J 0 and R I. co may be unrealistic and/or not interchangeable). 
(ii) Areal flow must separate at the rim of the disk, and the resulting downstream 
wake may affect the upstream flow. (iii) Long’s hypothesis, as actually invoked 
in the derivation of (2.2) below, implies not only that the upstream flow is 
uniform, but also that all streamlines originate in this uniform flow. In  fact, 
all streamlines axe closed within the upstream separation bubble, in consequence 
of which the predicted flow within, and the shape of, the bubble may be (but 
are not necessarily) incorrect. We deal with these objections in turn.? 

(i) Long’s hypothesis, which precludes the formation of a true Taylor column, 
has been the subject of much controversy (see Greenspan’s remarks, 1968, 5 4.6), 
partially because the slow-motion (k f 00) model predicts Taylor columns for 
either t f- co or Y J, 0 (Greenspan 1968, Q 4.3), and partially because of the implicit 
existence of an upstream impulse proportional to the lee-wave drag (Benjamin 
1970). These difficulties are resolved, at least in principle, by McIntyre’s (1972) 
discovery that second-order transient effects downstream of an obstacle in a 
bounded (by a circular tube) rotating flow give rise to cylindrical waves that 
propagate upstream of the obstacle and appear as a columnar disturbance in the 
limit t 1.00. McIntyre also shows that these second-order effects are evanescent 
in an unseparated unbounded flow, and an extension of his calculation yields 
the asymptotic approximation (Miles 1972) 

uo/U N 0.01Fqk6(a/R) (2QR/77 f 00) (1.3) 

for the columnar velocity uo upstream of a small obstacle of dimensionless 
dipole moment .PI (PI -+ 1 for a sphere and 4/(377) for a disk as k 4 0;  see figure 3 
below) in a tube of radius R. This result, which is based on a perturbation calcula- 
tion, is valid only for uo/ U < I and depends essentially on the assumption of an 
inviscid fluid [McIntyre shows that a true columnar disturbance is impossible in 

-f The phenomena cited in (i)-(iii) are not necessarily independent. For example, closed 
streamlines may occur downstream, as well as upstream, of the disk. 
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a bounded, viscous flow in the limit T + co; that the same result holds for an 
unbounded flow follows from a calculation similar to that given by Miles (1970) 
for an oseenlet]. Nevertheless, (1.3) suffices to show that upstream influence is 
negligible for sufficiently small a/R and moderate k, but that it may ultimately 
be significant as k t co with a/R fixed. Considering, for example, Maxworthy’s 
experiments with half-inch spheres in a twelve-inch tube, we obtain uo/U = (0.01, 
0.1,0.4,1.3) for k = (2 ,3 ,4 ,5) ;  these same values of uo/U are roughly applicable to 
Orloff & Bossel’s disk but must be multiplied by six for their sphere. 

(ii) It is widely accepted that the effects of downstream separation on the 
upstream flow are only secondary if k = 0- for example, the observed, anterior 
flow over a sphere at  high Reynolds numbers is qualitatively similar to that 
predicted on the hypothesis of potential flow, even though separation actually 
occurs near the equator. A rather successful comparison between the theoretically 
predicted (Miles 1969a) and observed (Maxworthy 1970) flows upstream of the 
forward separation bubble in a rotating flow, wherein the bubble is incorporated 
into the theoretical model by regarding it as part of an equivalent obstacle, 
suggests that the downstream wake has only a secondary effect on the upstream 
flow for moderate k and small a/B (the aforementioned comparisons were for k 
between 2 and 3 and a/R = 0-04). On the other hand, this may not be true in 
that regime of k and a/R in which nonlinear interactions are not small, especially 
as these interactions are initiated in the downstream flow. [McIntyre (1972) has 
pointed out that resonant interactions among the lee waves could lead to secular 
instability of the lee-wave train. Such an instability could yield a downstream 
wake even in the absence of viscous separation and also could diminish the 
strength of the cylindrical waves that propagate upstream of the obstacle.] 
A comparison between theory (Miles 1969 b )  and experiment (Pritchard 1969) 
for accelerated flow past a sphere also supports the contention that the down- 
stream wake has only a secondary effect on the upstream flow, although in this 
case acceleration may inhibit downstream separation. It may be significant that 
separation occurs at  the rim of the disk independently of E,  whereas the position 
of the separation ring on the sphere depends on k; this suggests that the upstream 
and downstream flows may be more effectively decoupled for a disk than for a 
sphere. 

There is, of course, no question as to the importance of separation for the 
downstream flow. Stewartson (1968) suggests that a more realistic prediction 
of that flow may be obtained by admitting a columnar disturbance upstream of 
the obstacle and determining its strength through the requirement that the 
tangential velocity should vanish on the posterior surface of the obstacle. 
Trustrum (1971) shows that such a model (which, following Stewartson, she 
calls an Oseen model) does provide a theoretical prediction of the downstream 
flow that is qualitatively similar to observation for stratified flow over a thin 
barrier (the two-dimensional analogue of the circular disk); however, the pre- 
dicted upstream flow differs significantly from observation. 

(iii) The inviscid flow predicted on Long’s hypothesis is a valid solution of the 
equations of motion even if closed streamlines do appear in the flow; however, 
the solution then is not unique and is likely to be a t  least locally unstable. There 
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seems to be little doubt that viscosity exerts a significant influence on the flow 
inside the separation bubble; on the other hand, the aforementioned comparison 
between theory and experiment supports the validity of both an inviscid model 
and Long’s hypothesis for the exterior flow. The essential question, then, is 
whether the probable failure of the basic model to provide an adequate descrip- 
tion of the flow inside the bubble also implies its failure to provide an adequate 
approximation 1;o the shape, or at least the length, of the bubble. This question 
is perhaps best answered by carrying out the calculation and comparing the 
results with observation. 

The boundary-value problem for a circular disk in a rotating flow may be 
solved either through separation of variables in oblate spheroidal co-ordinates 
or through the construction and approximate solution of an integral equation 
for an equivalent-vortex-sheet density. We give the former solution in § 3 and 
the latter formulation in 5 5 (but this solution also has been carried out in detail). 
The predicted value of k, is 1.9, in agreement with the value measured by Orloff & 
Bossel. The results for s(k) are qualitatively consistent with their observations 
in that they imply a rapid growth of s(k) for k > 3. They also imply a rapid 
increase of the strength of the singularity at the rim of disk for k > 3, in con- 
sequence of which the inviscid model becomes increasingly less realistic. Further 
theoretical progress would appear to demand a model that incorporates viscous 
effects, a t  least in the neighbourhood of the rim, and probably throughout the 
upstream separaition bubble. 

2. Boundary-value problem 

velocity from a vector potential according to 

where cP1 is a unit vector in the azimuthal direction of rotation, rq5 is the Stokes 
stream function and r is the cylindrical radius. The scalar q5 satisfies: 

(2.2) 
[cf. Batchelor (1967’3 7.5), in whose notation $ = rq5, C = k$ and dH/d$ = 3k2], 
where x and r are cylindrical polar co-ordinates; the boundary condition (of 
tangential flow on the disk) 

Referring all lengths and velocities to a and U, respectively, we derive the 

v = V x + + k + ,  9 = +1gW,r), (2.1) 

4, -t q5w + r-14r + (k2 - r2) q5 = &k2r 

q5=0 ( x = O ,  O < r < l ) ;  (2-3) 

(2.4) 

and the radiation condition (no inertial waves appear in the upstream flow) 

where R is the spherical radius. 

q5 - &r + o( l /kB) (kB -+ 00, x < 0) ,  

3. Spheroidal co-ordinate solution 
We pose q5 in the form 



694 J .  W .  Niles 

where $r is a particular solution of (2.2) that yields the basic flow, 
oblate spheroidal co-ordinates, defined by 

x = f l r ,  r = (g2+ I)+ (1 -r2)a (6  2 0, - 1 < 7 < I), 

and 7 are 

(3.2a, b) 

the q5n are a complete set of complementary solutions of (2.2), each of which 
satisfies (2.4) or, equivalently, 

q5n = o ( i / k E )  (k$+ 00, - 1 < 7 < 01, (3.3) 

and the B, are determined by (2.3), which implies 

00 

c Bn&(0,7) = (1-72)* ( - 1  < 7 < 1). (3.4) 
n = l  \ 

Solving (2.2) by separation of variables, and proceeding as in the corresponding 
problem for stratified flow over a thin barrier (Miles 1968), we pose 4, in the form 

#n(E, 7) = Sn(7) + I: Drnn-ErnM Srn(~),  (3.5a) 

wheze .F , (E)  RIZ( - ik, ig), (3.5b) 

00 

m= 1 

G,(g) Ri2( - ik, iE)/Ri2( - ik, iO), (3.5c) 

Sn(7) f l l n ( - i k > T ) ,  ( 3 . 5 4  

R$k2) and S,, are spheroidal wave functions in the notation of Flammer (1957), 
and the D,, are to be determined by (3.3). We refer to equations in Flammer’s 
monograph by the prefix F. Invoking the asymptotic approximations given 
by F(4.1.13, 20) for and remarking that each of the odd (n = 1, 3, ...) and 
even (n = 2,4,  ...) subsets of the Sn(7) is complete and orthogonal in 0 < 7 < 1 
and that 

00 

fln(7) = sgn7 C (Nrnn/%Jflrn(7) (0 < 171 ‘1, (3-6) 
m = l  

(N, = N,, in Flammer’s notation), we find that (3.3) implies 

D,, = ( - )&n-m+U (Nmn/Nm) [Rg( - ik, iO) ] -1 .  (3.9) 

Multiplying (3.4) through by &y), integrating over (- 1, I), invoking the 
orthogonality of the S, and the fact that S,(7) is even or odd in 7 according as I 
is odd or even, respectively, and remarking that 

(3.10) 

1 4 ap  
B, = [&/-I 3 Nn 

( I  - y2)* Xn(7) d7 = - - (a odd), (3. I 1 a) 

0 (12 even), (3. I1  b) 
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FIGURE 1. The stagnation-point velocity gradients for 8 disk and sphere relative to the 
respective limiting values for potential flow, ( w : ) ~  = 2/77 and #. 

where dim is the coefficient of P,l(r) in the expansion of S,(r) in associated Legendre 
functions, see F(3.1.3b). It follows that n is odd and m is even throughout 
(3.4)-( 3.9). 

4. Velocity on disk 

By invoking (3 .1 )  and (3 .5a) ,  we obtain 
The velocity on the disk, as determined by (2.1) and (2.3),  is purely radial. 

,u = Irl-l(aW&o ( 4 . 1 ~ )  

= l4-l 2 %flm(r )9  (4.1b) 
m 

m = l  
m 

12=1 
where Vm = -Q C B,[6,,G~(5)fDm,F~tg)I5=,. (4.2) 

The radial derivative of the velocity at the stagnation point is given by 

W: 3 (dv/Er),o = lrl-l(l - r2)* (dv/dr),,-, (4 .3a )  
m 

= 2 V,( -)m-1cion( - i k ) ,  (4.3b) 
m = l  

where ckm is the coefficient of ( 1  -r2)* in the expansion of fl,(r) in powers of 
( 1  -rz), see F(3.2.7). 
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FIGURE 2. The normalized meridional velocity distribution on the upstream face of the disk. 
The dashed portions of the curves correspond to the reversed flow inside the stagnation 
bubble, where the present calculation is not expected to be quantitatively valid. 

Retaining three terms in (4 .3b )  yields vi to three significant figures for 
I% < Ic ,  = 1.90, at which point vi = 0 (8: < 0 for Ic > k,). The result, together with 
the corresponding result for a sphere of radius a (Miles 1971), is presented in 
figure 1. The normalized (to remove the singularity at r = 1) velocity distribu- 
tion is plotted in figure 2. The predicted position of the forward stagnation ring 
is r, = 0.32 and 0.61 for k = 2 and 2-5, respectively, and presumably tends t o  
1- for k + 00. 

5.  Upstream flow 

to the fluid at  rest is given by 
The axial perturbation velocity in the direction of motion of the disk relative 

uo(x;) = 1 - ~ - l ( r $ 5 ) ~  (x < 0, r = 0) 

= 1-(g2+T/2)-+{(1-p)$5}?] (5  = -x, 7 = - 1 )  

( 5 . 1 ~ ~ )  

(5.16) 

The expansion (5.1 c )  converges well in the neighbourhood of the disk, but only 
slowly for 1x1 $ 1. 

We obtain an alternative representation, which leads more directly to an 
asymptotic approximation for 1x1 $ 1, in the form of a Fourier-Bessel integral. 
Introducing (cf. Miles 1968) 

(5.2a) 

(5.271) 
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as the strength of an equivalent vortex sheet and the Hankel transform pair 

Z(P) = S I C ( r )  J,(Pr,rdr, [ ( r )  = j; Z(P)J,(Pr)PdP, (5.3a,b) 
0 

we find that (2.2) and (2.4) are satisfied by 

where H ( z )  is IHeaviside's step function. The function [ ( r )  is determined ex- 
plicitly by (3.1), which, in conjunction with (3.5), yields 

m 

[ ( r )  = - ( l - r 2 ) - * ~ B n G ~ ( 0 ) 8 n { ( l - r 2 ) * } .  (5.5) 
1 

Alternatively, we may substitute (5.4) into (2.3) to obtain the integral equation 

which, together with (5.3), the constraint (5.2b),  and the restriction that the 
singularity of {Jr)  at r = 1 be integrable, determines [ ( r ) ;  it  may be solved 
approximately by Galerkin's method (cf. Miles 1968). 

Integrating (5.4) twice by parts, we obtain 

# N &-dlJ1(kr )  (kIsl)-1-{k2d3Jl(kr)-dlkrJ2(kr)}(klxl)-3 

+o(ll~xl-5) (kx+ --oo), (5.7) 

where dl == kZ(k)  = 4k2F,(k) and d3 = k-l(d/dP){PZ(P)}1,=, (5.8a, b )  

are the upstream-influence parameters of the disk, and E; is its dipole moment 
(cf. Miles 1 9 6 9 ~ ) .  Substituting (5.5) into (5.3a), we obtain 

W 

Z(P) = - C B , G A q  1 0 J1{P(1-r2)*l~n(r)dr1. (5.9) 

The integral for 16 = k may be evaluated with the aid of F(5.3.14) with the 
end result 

m 

(5.10) 

If P + k, the integral in (5.9) may be evaluated by introducing the expansion 
of &(r) in P i ( y )  and using the known Hankel transform of Pk; the resulting 
expression for d 3 ( k )  is complicated but numerically tractable in the range of 
interest. Numerical values of 3. are compared with the corresponding results for 
a sphere (Miles 1971) in figure 3. 

Substituting (5.7) into (&la ) ,  we obtain 

u,(x) N d,lxl-1+d3lx]-3+0(1x1-5). (5.11) 
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k 

FIGURE 3. The dipole moment for a disk, as determined by (5.8a) and (5.10), and for a sphere 
(Miles 197 1). The respective, limiting values of E; for k = 0 (potential flow) are 4/(37r) and 1 

0 2 4 6 
k 

FIGURE 4. The location of the upstream stagnation point z = -s(b), as defined by (5.12), 
and the strength of the rim singularity, as defined by (6.15). 

The upstream stagnation point is determined by 
u,(x) = 1, x = -s(k:) < 0 (k: > k*). (5.12) 

The confluence of this stagnation point with that on the disk (x = 0-, r = 0) 

implies s ( 4  -+ Q(k: - k:*P (k: 4 k:*), (5.13) 

whilst (5.1 I) implies s(k) - &A4 (k? @. (5.14) 
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A numerical matching of (5.13) with the values of s(k) implied by either (5 .1~)  
or (5.11) yields C = 0.92. The two-term approximation (5.11) provides an 
adequate appi*oximation ( & 2%) to s(k) for k > 2.6, whilst (5.14) gives values 
accurate to wjthin 1 yo for k > 4. The combined approximations are plotted in 
figure 4. 

The preceding numerical results were obtained and checked by using Flammer’s 
tabulated values of the various parameters and functions for k = l(0.5) 2.5, by the 
computation of these parameters and functions for k < 6 on a digital computer, 
and by a Galerkin solution of (5.6). Keeping only one (or four) term(s) in the 
expansion (5.10) yields&, to within 1 % fork < 2 (or 5.8). The numerical solution 
deteriorates rapidly for k 2 6 in consequence of the rapid decrease of Ri%( - ik, i0) 
with increasing k; this numerical difficulty could be overcome and the results 
extended to larger k, but the limited significance of the basic model for large k 
renders the efhrt unattractive. The available asymptotic results for the oblate 
spheroidal functions are inadequate for an asymptotic approximation for large k, 
but a heuristic investigation suggests that&,, and hence s, grows like e2k as lc 1.00. 

The preceding solution implies that both the velocity and vorticity are singular 
at the rim according to 

v - 5 -  a(l-r2)-4 ( r t  I), ( 5 . 1 5 ~ )  

where 
rn 

(5.15b) 

departs only sljghtly from its potential-flow value of 217r for k < 2 but increases 
rapidly for k > 3; see figure 4. This suggests that viscous effects are comparable 
with those in a non-rotating flow for moderate k (including k < k*), but that 
they become increasingly important, and our model correspondingly less 
realistic, with increasing k. 
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